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Example: Roll a dice
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 Let X denotes the result.
 This X is called a random variable (RV).
 We can simulate this in MATLAB by X = randi(6).
 There are 6 possible values of X: 1,2,3,4,5,6
 The set of these number is call a support of X.

 Technically, a set S is called a support of a random variable 
X if the probability that is one.
 For this example, a bigger set such as is also a 

support for X.
 We usually mean the minimal support when we say support.
 When we want to emphasize that the set S is a support of a 

particular random variable X, we write SX instead of S.



Discrete Random Variable
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 X is a discrete random variable if it has a countable support.
 Recall that countable sets include finites set and countably

infinite sets.

 For X whose support is uncountable, there are two types:
 Continuous random variable
 Mixed random variable



Probabilities involving discrete RV
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 Back to example of rolling a dice

 The “important” probabilities are

 In tabular form: 

      11 2 6
6

P X P X P X      

1 1/6

2 1/6

3 1/6

4 1/6

5 1/6

6 1/6

Dummy 
variable

 Probability mass function 
(PMF):

 In general,

 Stem plot:

 
1/ 6, 1,2,3,4,5,6,
0, otherwise.X

x
p x


 


1/6

1   2   3   4   5   6
x

   Xp x P X x 



Probabilities involving discrete RV
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To find P[some condition(s) on X] 
from the pmf pX(x) of X:
1. Find the support of X.
2. Look only at values x inside the 

support. 
Find all x that satisfies the 
condition(s).

3. Evaluate the pmf at x found in 
the previous step.

4. Add the pmf values from the 
previous step.

Back to the dice roll 
example. Suppose we want 
to find P[X > 4].
1. The support of X is

{1,2,3,4,5,6}.
2. The members which 

satisfies the condition 
“>4” is 5 and 6.

3. The pmf values at 5 
and 6 are all 1/6.

4. Adding the pmf values 
gives 2/6 = 1/3.



Benford's law: Introduction
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 Consider the distribution of the first (leading) digit in real-life sources of 
data.

 Suppose you start reading through a particular issue of a publication like the 
New York Times or The Economist, and each time you encounter any number 
(the amount of donations to a particular political candidate, the age of an actor, 
the number of members of a union, and so on), you record the first digit of that 
number. Possible first digits are 1, 2, 3, … , or 9. In the long run, how 
frequently do you think each of these nine possible first digits will be 
encountered?

X = randi(1e6,1e5,1);

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

First Digit

R
el

at
iv

e 
Fr

eq
ue

nc
y

560447
845196
901480
639879
449454
41875
365825
41551
976613
706264
164932
88515
452648
820554

 It might be quite natural to 
assume that all digits are equally 
likely to show up in most random 
data sets.



Benford's law: Introduction
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 One of the following columns contains 
the value of the closing stock index as 
of Aug. 8, 2012 for each of a number of 
countries, and the other column 
contains fake data obtained with a 
random number generator. 

 Just by looking at the numbers, without 
considering context, can you tell which 
column is fake and which is real?
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Benford's law
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 The distribution of the first digit in many (but not all) real-life 
sources of data.

 Named after an American physicist Frank Benford, who stated it in 
1938, although it had been previously stated by Simon Newcomb
in 1881.

 There is a large bias towards the lower digits, so much so that 
nearly one-half of all numbers are expected to start with the digits 
1 or 2.

 
10

1log 1 , 1,2,3, 9,

0, otherwise.
X

x
x

p x

       





1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Zero is inadmissible as a first digit.
The signs of negative numbers are ignored.

[Benford, “The law of anomalous numbers”, Proceedings of the American 
Philosophical Society, vol. 78, pp. 551–572, 1938.]



Benford's law
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 Applicable to a wide variety of data sets, including electricity 
bills, street addresses, stock prices, population sizes, death 
rates, lengths of rivers, physical and mathematical constants.

 It tends to be most accurate when values are distributed 
across multiple orders of magnitude.

 Today, Benford's law is routinely applied in several areas in 
which naturally occurring data arise. 

 Perhaps the most practical application of 
Benford's law is in detecting fraudulent
data (or unintentional errors) in accounting 
reports, and in particular to detect fraudulent 
tax returns.

[http://as.wiley.com/WileyCDA/WileyTitle/productCd-1118152859.html]



Expectation
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 The expectation (or mean or expected value) of a 
discrete random variable X is given by

 To see why this makes sense, consider a RV X which takes 
only two possible values…

 X
x

X xp x

 
1/ 3, 3,
2 / 3, 4,
0, otherwise.

X

x
p x x


 





Analyze the following games (1)
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Flip a fair coin.
H: You get ฿100
T: You lose ฿100

Flip a fair coin.
H: You get ฿200
T: You lose ฿100

Game #1

Game #2



Analyze the following games (2)
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Flip an unfair coin with P({H}) = 10-6

H: You get ฿2,000,000
T: You lose ฿0

Pay ฿50 to play the game.
Flip an unfair coin with P({H}) = 10-6

H: You get ฿2,000,000
T: You lose ฿0

Game #3

Game #4



Government Lottery (สลากกนิแบ่งรฐับาล)
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หวย (Huay)[http://www.glo.or.th]



Government Lottery (สลากกนิแบ่งรฐับาล)
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Expected Profit 16 



Can only press once
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 Can only press once – Instant $1 Million or 50% chance for 
$100 million



Expectation and Variance
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 The expectation (or mean or expected value) of a discrete 
random variable X is given by

 The expected value of a function g of a RV X is given by

 The variance of a RV X is given by

 The standard deviation of a RV X is given by

 X
x

X xp x

     X
x

g X g x p x    

     2 22Var X X X X X           

 VarX X 



Continuous Random Variables
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 Recall: X is a discrete random variable if it has a countable 
support.

 X is a continuous random variable if we can find a function 
f such that

 The function f is called the probability density function
(pdf) or simply density.

 When we want to emphasize that the function f is a density of a 
particular random variable X, we write fX instead of f.

   
b

a

P a X b f x dx   



Examples
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 For the random variable X generated by X = rand in 
MATLAB, 

 For the random variable X generated by X = randn in 
MATLAB, 

 
1, 0 1,
0, otherwise.X

x
f x

 
 


 
21

21
2

x

Xf x e







Expectation and Variance
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 The expectation (or mean or expected value) of a 
continuous random variable X is given by

 The expected value of a function g of a RV X is given by

 The variance of a RV X is given by

 The standard deviation of a RV X is given by

 XX xf x dx




 

     Xg X g x f x dx




    

     2 22Var X X X X X           

 VarX X 



Symbolic Computations in MATLAB

21

 Symbolic Math Toolbox
 The Symbolic Math Toolbox is included in the Student Version of MATLAB.

 Functions for computing, solving, and manipulating symbolic math expressions and 
performing variable-precision arithmetic.

 Can analytically perform 
 Differentiation (including partial differentiation)
 (Definite and indefinite) integration 
 Taking limits (including one-sided limits)
 Summation (including Taylor series)
 Simplification
 Matrix operations
 (Integral) transforms (including Fourier, Laplace, Z)
 (Algebraic and differential) equation solving

 Data type: symbolic objects
 symbolic variables, symbolic numbers, symbolic expressions, symbolic matrices, and 

symbolic functions.



Symbolic Variables
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 Use sym or syms to create symbolic 
variables.
 The syms command:
 Does not use parentheses and quotation marks: 
syms x

 Can create multiple objects with one call: 
syms x y z

 The sym command:
 Requires parentheses and quotation marks: 
x = sym('x'). 

 Creates one symbolic object with each call.

 Can manipulate the symbolic objects 
according to the usual rules of mathematics.



Symbolic Numbers
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 To convert a number to a symbolic number, use the sym
command
 x = sym('2')

 If you create a symbolic number with 15 or fewer decimal digits, 
you can skip the quotes:
 x = sym(2)

 You also can create a rational fraction involving symbolic numbers:
 x = sym(2)/sym(5)
 x = sym(2/5)

 To evaluate a symbolic number numerically, 
use the double command:
 double(x)



Double-precision vs symbolic number
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 By default, the sym command returns a rational approximation of a 
numeric expression.

 Symbolic results are not indented. 

 Standard MATLAB double-precision results are indented.



Double-precision vs symbolic number
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 If you want to ensure a precise 
symbolic expression, you must 
avoid numeric computations. 

 Compare these three 
expressions. 
 The first is only accurate to 

double-precision numeric 
computation (about 16 digits). 

 The second and third avoid 
numeric computation 
completely.



Symbolic Expressions
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 x = sym('(sqrt(2)+1)/3')
 b = sym('a^2+1')
 Note that the second statement above does not create 

(symbolic) variable a.



Same name
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 Many of the functions in the Symbolic Math 
Toolbox have the same names as their numeric 
counterparts.
 MATLAB selects the correct one depending on 

the type of inputs to the function. 
 Example:

 diff calculates differences between adjacent 
elements (which can be used to numerically 
approximate the derivative of a function) 
 help diff,
 doc diff

 symbolic/diff differentiates symbolic 
expression
 help sym/diff
 doc symbolic/diff



Symbolic Functions
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 syms f(x,y) creates the symbolic function f and symbolic 
variables x and y.

 Alternatively, you can use sym to create a symbolic function. 
 Note that sym only creates the function. It does not create symbolic variables 

that represent its arguments. You must create these variables before creating 
a function:

 syms x y;
 f(x,y) = sym('f(x,y)');

 Create a function defined by a particular 
mathematical expression
 syms x y
 f(x,y) = x^3*y^3

 After creating a symbolic function, you can 
differentiate, integrate, or simplify it, substitute 
its arguments with values, and perform other 
mathematical operations



Calculus: diff
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 diff(S) differentiates a 
symbolic expression S.
 If you do not specify any 

variable, MATLAB chooses 
a default variable by the 
proximity to the letter x.

 diff(S,'v') or 
diff(S,sym('v'))
differentiates S with 
respect to v. 
 Can find partial derivative

differentiates f
with respect to x

Derivatives of 
Expressions with 
Several Variables

 The diff function can also take a symbolic matrix 
as its input. In this case, the differentiation is done 
element-by-element.



Default Symbolic Variable
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 If you do not specify an independent variable 
when performing substitution, differentiation, 
or integration, MATLAB uses a default 
variable. 

 The default variable is typically the one closest 
alphabetically to x or, for symbolic functions, 
the first input argument of a function.

 To determine the default variable, use 
symvar.

The letter t is 
closer to x in the
alphabet than the 
letter s is.



Calculus: diff

31

 diff(S,n), for a 
positive integer n, 
differentiates S n times.

 diff(S,'v',n) and 
diff(S,n,'v') are 
also acceptable.

Interesting Example: Abstract functions



Calculus: int
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 int(S) is the indefinite 
integral of S. 

 int(S,v) is the indefinite 
integral of S with respect to v. 

 int(S,a,b) is the definite 
integral of S from a to b. 
 a and b are each double or 

symbolic scalars.
 inf is also OK.

 int(S,v,a,b) is the 
definite integral of S with 
respect to v from a to b.



Assumptions on Symbolic Objects
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2axe dx
a








 
1

ln , 1,

, 1.
1

n n

x n
x dx x n

n



 
 

 




Assumptions on Symbolic Objects

34

 Symbolic variables are complex variables by default.
 To set an assumption on a symbolic variable, use the assume

function. 
 Assume replaces all previous assumptions on the variable with the 

new assumption.
 For example, assume that the variable x is nonnegative:
 syms x
 assume(x >= 0)

 If you want to add a new assumption to the existing assumptions, 
use assumeAlso. 
 For example, add the assumption that x is also an integer.
 assumeAlso(x,'integer')
 Now the variable x is a nonnegative integer:



Assumptions on Symbolic Objects
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 assume and assumeAlso let you state that a variable 
or an expression belongs to one of these sets: 
 integers, rational numbers, and real numbers.

 Alternatively, you can set an assumption while declaring a 
symbolic variable by the sym or syms command:
 Two assignable assumptions: real and positive.

 To check existing assumptions,



Deleting Symbolic Objects and Their 
Assumptions
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 Symbolic objects and their assumptions are stored separately.
 The object is stored in the MATLAB workspace, and the assumption 

is stored in the symbolic engine. 
 When you delete a symbolic object from the MATLAB workspace 

using clear x, the assumption of x still remains in the 
symbolic engine.
 If you declare a new symbolic variable x later, it inherits the old 

assumption instead of getting a default assumption.
 If you want to remove both the symbolic object and its 

assumption, use two subsequent commands:
 syms x clear
 clear the assumption,

 clear x;
 delete the symbolic object



Calculus: limit

37

 limit(expr,x,x0)
computes limit of the symbolic 
expression when x approaches 
x0.

 limit(expr,c) computes 
limit of the symbolic expression 
when the default variable 
approaches c.

 limit(expr) computes limit 
of the symbolic expression when 
the default variable approaches 0.

lim 1
x

c

x

c e
x

   
 

0

sinlim 1
x

x
x





Calculus: One-Sided Limits
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 limit(expr,x,x0,'lef
t') computes the limit of the 
symbolic expression when x 
approaches x0 from the left.

 limit(expr,x,x0,'rig
ht') computes the limit of the 
symbolic expression when x 
approaches x0 from the right.

0
lim 1
x

x
x


0
lim 1
x

x
x
 

Since the limit from the left does not equal the limit 
from the right, the two-sided limit does not exist. 
In the case of undefined limits, MATLAB returns
NaN (not a number).



Calculus: limit
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Recall, from calculus, that 

     
0

lim
h

f x h f x
f x

h

 
 

Also recall that 

   sin cosd x x
dx





Summary
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pretty
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 Print/display symbolic output in an “easy-to-read” form 
resembling typeset mathematics.



vpa

42

 vpa = Variable precision arithmetic
 Numeric computations in MATLAB are 

done in approximately 16 decimal digit 
floating-point arithmetic.

 With vpa, you can obtain results to 
arbitrary precision, within the limitations 
of time and memory.
 The default precision for vpa is 32.

 Caution: If you pass a numeric expression 
to vpa, MATLAB evaluates it numerically 
first.
 So use a symbolic expression or place the 

expression in quotes.

 Examples
 The first results are accurate to 

approximately 16 digits
 The next two results are accurate to 32 

digits
 The third result is accurate to the 

specified 50 digits.
 The 4th result is accurate to only about 16 

digits (even though 50 digits are 
displayed).



Substitution
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 The function subs
replaces all 
occurrences of the 
symbolic variable in 
an expression by a 
specified second 
expression.



Substitution
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 You can substitute multiple 
symbolic expressions, numeric 
expressions, or any 
combination, using cell arrays of 
symbolic or numeric values.

Interesting Example: Abstract functions



Algebraic simplification
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 expand(S) expands the symbolic 
expression S.
 Most often used on polynomials 

(distributing products over sums, 
multiplying out terms), but also expands 
trigonometric, exponential and 
logarithmic functions.

 factor(S) factorizes the symbolic 
expression S.
 If S contains all integer elements, the 

prime factorization is computed.
 collect(S) views a symbolic 

expression as a polynomial in its 
symbolic variable (which may be 
specified) and collects all terms with the 
same power of the variable.



simplify and simple
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 Function simplify applies many identities in an attempt to 
reduce a symbolic expression to a simple form.
 You can also use the syntax simplify(f,'Steps',n) where 
n is a positive integer that controls how many steps simplify takes. 
 By default, n = 1.

 The alternate function simple computes several simplifications 
and chooses the shortest of them.



symsum: Symbolic Summation
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2

2 2 2
1

1 1 11
2 3 6k k





     

2

0

1 , 1,
1 1

, 1.

k

k

x
x x x x

x





      
 

 



Plot
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 There are several plot functions in 
MATLAB with names beginning with 
“ez” that perform the necessary 
conversions from symbolic 
expressions to numbers and plot 
them.

 ezplot lets you plot the graph of a 
function directly from its defining 
symbolic expression. 

 By default, the x-domain is [-2, 2 ]. 
 This can be overridden by a second 

input variable.
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syms x;  ezplot(2*x/(x^2-1))

ezplot(2*x/(x^2-1),[-10 10])



Use subs and double for more 
control in plotting
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Solve: Solving algebraic equations
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Use the double equal sign (==) to define an equation

If you do not specify the right side of the equation, solve assumes that it is zero

 The inputs to solve can be quoted strings or symbolic 
expressions. 



Solving algebraic equations
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 The solve function cannot solve 
all equations. It does well with 
low-degree polynomial 
equations, but can have 
difficulty with trigonometric or 
other transcendental equations. 

 If an exact symbolic solution is 
found, you can convert it to a 
floating-point solution via 
double. 

 If an exact symbolic solution 
cannot be found, then a variable 
precision one is computed.



Solving algebraic equations
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Solving algebraic equations
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This is a symbolic vector whose 
elements are the two solutions.



Solving Systems of Algebraic Equations
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 The function solve can also compute solutions of systems of 
general algebraic equations



Solving differential equations
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First-Order ODE

Second-Order ODE



Solving differential equations
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 The function dsolve solves 
ordinary differential equations.

 The symbolic differential 
operator is D.

 If no independent variable is 
supplied, then it is assumed to be 
t. 

 The higher order symbolic 
differential operators D2, D3, 
... can be used to solve higher 
order equations.


